Unprecedented oxidative addition of α -halo acyl halides to 6,6-dialkoxyfulvene

Bor-Cherng Hong,* Zhong-Yi Chen and E. Sampath Kumar

Department of Chemistry, National Chung-Cheng University, Chia-Yi, 621, Taiwan, ROC

Received (in Cambridge) 15th March 1999, Accepted 22nd March 1999

In contrast to the [2 + 2] cycloaddition of fulvenes and ketenes, fulveneketene acetal, 2-cyclopentadienylidene-1,3-dioxolane, reacts with α -halo acyl halides to give various C-1 substituted fulvenes that constitute an important class of intermediates for organic synthesis.

Fulvenes and their derivatives have received a great deal of attention over the years.¹ The [2 + 2] cycloaddition of α -chloroketenes to fulvenes is a general and powerful approach to the synthesis of various polycyclic systems (Scheme 1).^{2,3} Amongst

others, the [2 + 2] reaction adduct has been applied to the synthesis of ophiobolin, filifolone, chrysanthemic acid and thienamycin analogs, *etc.* In conjunction with our continuing interest in the chemistry of fulvenes,⁴ we have developed a novel oxidative addition of α -haloacetyl chloride to fulveneketene acetal that provides a series of C-1 substituted fulvene derivatives.⁵ Herein we describe the first example of the oxidative addition of α -chloroacetyl chloride to fulveneketene acetal.

Fulvene usually reacts with ketene to give [2 + 2] cycloaddition products. In contrast, we have found that generation of dichloroketene in the presence of fulvene **1** and triethylamine results in the formation of the fulvene **3** (Scheme 2).⁶ Although the benzoylation of cyclopentadienide has been reported to afford a mixture of 1-benzoyl-6-hydroxy-6-phenylfulvenes in medium yield,⁷ a practical synthesis of 1-carboxy-6-hydroxyfulvene has never been realized. In our hands, addition of a benzene solution of 2,2-dichloroacetyl chloride to a mixture of 6,6-dialkoxyfulvene **1** and Et₃N in benzene at 25 °C for 1 h provided the fulvene **3** in 90% yield as the only detectable

adduct (entry 1, Table 1). The structure of **3** was assigned based on ¹H, ¹³C NMR, COSY, DEPT, HMQC, HMBC, INEPT-INADEQUATE, MS and elemental analysis.[†] This striking difference in the chemoselectivity of fulvene **1** versus regular fulvenes may be attributed to an increase in the electron density of the 6,6-dialkoxyfulvene π -system. The formation of **3** may be rationalized via the following stepwise mechanism: initial addition of the acyl chloride to C-1 of the fulvene affords the reactive acylated intermediate **2**. Subsequent addition of H₂O during work-up and isomerization gives **3** (Scheme 2). Ester exchange in compound **3** (TsOH, refluxing MeOH) provided the corresponding fulvene methyl ester.

Reaction of a series of homologous acyl chlorides with 1 gave the corresponding adducts **4–9** (entries 2–7, Table 1). Unfortunately, 1 did not react with acid chlorides that lack an α -substituted electron-withdrawing group (entries 8–9, Table 1).‡ This may be due to the lower electrophilicity of the acyl group, which would in turn disfavor the first addition step. Hydrogenation of **4** to the keto ester **10** followed by transesterification provided the known volatile methyl ester **11**, an intermediate in the synthesis of the carbocyclic analogs of captopril (Scheme 3).⁸ Thus, as illustrated by the entries of Table 1, this new sequential addition reaction allows an efficient

J. Chem. Soc., Perkin Trans. 1, 1999, 1135–1137 1135

^{*a*} Isolated yield based on starting fulvene. ^{*b*} No reaction at ambient temperature after 72 h. Only a small amount of products (less than 5%) was found under reflux conditions after 72 h.

entry into C-1 substituted fulvene derivatives. This method establishes the experimental framework for a conceptually new approach to such systems.

Experimental

General procedure for the oxidative addition

To a mixture of fulveneketene acetal 1 (272 mg, 2 mmol) and Et_3N (2 mL, 14.3 mmol) in dry benzene (15 mL) was added dichloroacetyl chloride (0.2 mL, 2.1 mmol). The suspension

1136 J. Chem. Soc., Perkin Trans. 1, 1999, 1135–1137

was vigorously stirred for 1 h at 25 °C. The solution was concentrated *in vacuo* and the residue was purified by flash column chromatography with 20% EtOAc–hexane (R_f 0.53 in 50% EtOAc–hexane) to give **3** as a yellow solid (443 mg, 90% yield); ¹H NMR (d_6 -acetone, 400 MHz): δ_H 3.85–3.95 (m, 2 H), 4.40–4.50 (m, 2 H), 6.49 (dd, J = 5, 3 Hz, 1 H), 7.42 (dd, J = 5, 1.6 Hz, 1 H), 7.62 (s, 1 H), 7.68 (dd, J = 3, 1.6 Hz, 1 H), 16.09 (br s, 1 H); ¹³C NMR (d_6 -acetone, 125 MHz): δ_C 61.12 (CH₂), 67.83 (CH), 69.47 (CH₂), 118.13 (C), 121.40 (C), 125.96 (CH), 131.09 (CH), 143.93 (CH), 165.75 (C), 170.80 (C); MS (m/z, relative intensity): 268 (M⁺ + 4, 3%), 266 (M⁺ + 2, 12), 264 (M⁺, 17), 204 (39), 202 (60), 181 (30), 163 (22), 139 (70), 119 (100); exact mass calc. for C₁₀H₁₀O₄Cl₂ (M⁺): 263.9957; found 263.9941. Anal. Calc. for C₁₀H₁₀O₄Cl₂: C, 45.31; H, 3.80; O, 24.14, found C, 45.49; H, 3.78; O, 24.28%.

Acknowledgements

This research was supported by the National Science Council (NSC 88-2113-M-194-013, NSC 88-2314-B-194-001) and National Chung-Cheng University. The authors also thank Dr Sepehr Sarshar for valuable discussions.

Notes and references

[†] All new compounds gave satisfactory spectral and analytical data. [‡] Dimethylketene, generated *in situ* from isobutyl chloride and Et_3N , reacted with 6,6-dimethylfulvene, 6,6-diphenylfulvene, 6-ethoxyfulvene and 6,6-dimercaptofulvene to give the [2 + 2] adducts, see refs. 2 and 3.

- 1 For a recent review on fulvene chemistry, see: M. Neuenschwander, in *The Chemistry of Double-bonded Functional Groups*, ed. S. Patai, vol. 2, p. 1131, Wiley, Chichester, UK, 1989.
- W. T. Brady, S. J. Norton and J. Ko, Synthesis, 1983, 1002; K. Tanaka and A. Yoshikoshi, Tetrahedron, 1971, 27, 4889; H. Stadler, M. Rey and A. S. Dreiding, Helv. Chim. Acta, 1984, 67, 1379; R. Huston, M. Rey and A. S. Dreiding, Helv. Chim. Acta, 1982, 65, 451; L. A. Paquette, J. A. Colapret and D. R. Andrews, J. Org. Chem., 1985, 50, 201; G. A. Russell, K. D. Schmitt and J. Mattox, J. Am. Chem. Soc., 1975, 97, 1882; W. Friedrichsen, T. Debaerdemaeker, A. Boettcher, S. Hahnemann and R. Schmidt, Z. Naturforsch., B: Anorg. Chem. Org. Chem., 1983, 38, 504; K. Imafuku, K. Yamaguchi and H. Matsumura, Bull. Chem. Soc. Jpn., 1980, 53, 745; R. E. Harmon, W. D. Barta, S. K. Gupta and G. Slomp, J. Chem. Soc. (C), 1971, 3645; K. Imafuku and K. Arai, Synthesis, 1989, 501; K. Imafuku and K. Inoue. Bull. Chem. Soc. Jm., 1982, 55, 3242.
- K. Inoue, *Bull. Chem. Soc. Jpn.*, 1982, 55, 3242.
 H. Stadler, M. Rey and A. S. Dreiding, *Helv. Chim. Acta*, 1984, 67, 1854; G. A. Tolstikov, M. S. Miftakhov, R. R. Akhmetvaleev, G. G. Balezina and F. A. Valeev, *J. Org. Chem. USSR (Engl. Transl.)*, 1990, 26, 1861; G. A. Tolstikov, M. S. Miftakhov, R. R. Akhmetvaleev and L. M. Khalilov, *J. Org. Chem. USSR (Engl. Transl.)*, 1986, 22, 1401; E. M. Gordon, J. Pluscec and M. A. Ondetti, *Tetrahedron Lett.*, 1981, 22, 1871; A. J. Cocuzza and G. A. Boswell, *Tetrahedron Lett.*, 1985, 26, 5363.

- 4 For previous papers in this series, see: (a) B.-C. Hong, S.-S. Sun and Y.-C. Tsai, J. Org. Chem., 1997, 62, 7717; (b) B.-C. Hong and J.-H. Hong, *Tetrahedron Lett.*, 1997, 38, 255.
 5 Recently, a hydroxyfulvene dialdehyde has been applied to the synthesis of carbaporphyrins, see: K. Berlin, Angew. Chem., Int. Ed. Engl., 1996, 35, 1820. For recent studies on 1 or board 6.
- 5 Recently, a hydroxyfulvene dialdehyde has been applied to the synthesis of carbaporphyrins, see: K. Berlin, Angew. Chem., Int. Ed. Engl., 1996, 35, 1820. For recent studies on 1-carbonyl-6-hydroxyfulvene systems, see: S. Nakanishi, K. Kumeta and K. Terada, Synthesis, 1995, 33; P. Victory, J. I. Borrell, X. Batllori, J. Teixidó, P. Civit and A. Alvarez-Larena, Chem. Lett., 1993, 705; P. Victory, A. Alvarez-Larena, C. Beti, J. I. Borrell, X. Batllori and C. Córdoba, Chem. Ber., 1991, 124, 207.
- 6 For a relevant reaction of dichloroketene with vinyl sulfoxides, see: J. P. Marino and M. Neisser, J. Am. Chem. Soc., 1981, 103, 7687.
- 7 W. J. Linn and W. H. Sharkey, J. Am. Chem. Soc., 1957, 79, 4970.
- 8 A. Sugie and J. Katsube, Chem. Pharm. Bull., 1979, 27, 1708.

Communication 9/02038A